Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Waste Manag ; 169: 91-100, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37418788

RESUMO

Interest in the conversion of manure in biogas via anaerobic digestion (AD) is growing, but questions remain about the biosafety of digestates. For a period of one year, we monitored the impact of three mesophilic agricultural biogas plants (BPs) mainly fed with pig manure (BP1, BP3) or bovine manure (BP2) on the physicochemical parameters, the composition of the microbial community and the concentration of bacteria (E. coli, enterococci, Salmonella, Campylobacter, Listeria monocytogenes, Clostridium perfringens, Clostridium botulinum and Clostridioides difficile). The BP2 digestate differed from those of the two other BPs with a higher nitrogen content, more total solids and greater abundance of Clostridia MBA03 and Disgonomonadacea. Persistence during digestion ranked from least to most, was: Campylobacter (1.6 to >2.9 log10 reduction, according to the BP) < E. coli (1.8 to 2.2 log10) < Salmonella (1.1 to 1.4 log10) < enterococci (0.2 to 1.2 log10) and C. perfringens (0.2 to 1 log10) < L. monocytogenes (-1.2 to 1.6 log10) < C. difficile and C. botulinum (≤0.5 log10). No statistical link was found between the reduction in the concentration of the targeted bacteria and the physicochemical and operational parameters likely to have an effect (NH3, volatile fatty acids and total solids contents, hydraulic retention time, presence of co-substrates), underlining the fact that the fate of the bacteria during mesophilic digestion depends on many interacting factors. The reduction in concentrations varied significantly over the sampling period, underlining the need for longitudinal studies to estimate the impact of AD on pathogenic microorganisms.


Assuntos
Clostridioides difficile , Esterco , Animais , Bovinos , Suínos , Esterco/microbiologia , Biocombustíveis/microbiologia , Escherichia coli , Bactérias , Salmonella , Anaerobiose
2.
Waste Manag ; 152: 1-5, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35963201

RESUMO

Manure is a major source of antimicrobial-resistant bacteria and resistance genes carried by mobile genetic elements such as plasmids. In France, the number of on-farm biogas plants has increased significantly in recent years. Our study investigated the impact of mesophilic anaerobic digestion (AD) and the post-treatment of digestates on the fate of conjugative plasmids, along with their potential transfer of antimicrobial resistance. Samples of raw manure, digestates and post-treated digestates were collected from three on-farm biogas plants. Conjugative plasmids were captured using the Escherichia coli CV601 recipient strain and media supplemented with rifampicin and kanamycin - to which the recipient strain is resistant - and tetracycline, sulfamethoxazole, gentamicin, trimethoprim, amoxicillin, cefotaxime, ciprofloxacin or colistin. Putative transconjugants were identified and characterised by disc diffusion and whole genome sequencing. The results showed that the antimicrobial resistance genes transferred from the different matrices conferred resistance to tetracyclines, sulphonamides, trimethoprim, and/or streptomycin. Transconjugants were obtained from raw manure samples but not from digestates or post-digestates, suggesting that mesophilic AD processes may produce fewer conjugative plasmids potentially able to be transferred to Enterobacterales.


Assuntos
Antibacterianos , Esterco , Anaerobiose , Antibacterianos/farmacologia , Biocombustíveis , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Esterco/microbiologia , Plasmídeos/genética , Trimetoprima
3.
Sci Total Environ ; 840: 156693, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-35700775

RESUMO

The recycling of biomass is the cornerstone of sustainable development in the bioeconomy. In this context, digestates and composts from processed agricultural residues and biomasses are returned to the soil. Whether or not the presence of pathogenic microorganisms in these processed biomasses is a threat to the sustainability of the current on-farm practices is still the subject of debate. In this review, we describe the microbial pathogens that may be present in digestates and composts. We then provide an overview of the current European regulation designed to mitigate health hazards linked to the use of organic fertilisers and soil improvers produced from farm biomasses and residues. Finally, we discuss the many factors that underlie the fate of microbial pathogens in the field. We argue that incorporating land characteristics in the management of safety issues connected with the spreading of organic fertilisers and soil improvers can improve the sustainability of biomass recycling.


Assuntos
Compostagem , Solo , Agricultura , Fazendas , Fertilizantes/análise , Solo/química
5.
Artigo em Inglês | MEDLINE | ID: mdl-32751104

RESUMO

Digestate produced by agricultural biogas plants (BGPs) may contain pathogenic bacteria. Among them, Clostridium perfringens deserves particular attention due to its ability to grow under anaerobic conditions and persist in amended soil. The aim of this study was to examine the potential pathogenicity and the antimicrobial resistance of C. perfringens in manure and digestate collected from three agricultural biogas plants (BGPs). A total of 157 isolates (92 from manure, 65 from digestate) were screened for genes encoding seven toxins (cpa, cpb, etx, iapcpe, netB, and cpb2). The 138 cpa positive isolates were then screened for tetA(P), tetB(P), tet(M), and erm(Q) genes and tested for antimicrobial susceptibility. The toxinotypes identified in both manure and digestate were type A (78.3% of the isolates), type G (16.7%), type C (3.6%), and type D (1.4%), whereas none of the isolates were type F. Moreover, half of the isolates carried the cpb2 gene. The overall prevalence of tetA(P) gene alone, tetA(P)-tetB(P) genes, and erm(Q) gene was 31.9, 34.8, and 6.5%, respectively. None of the isolates harbored the tet(M) gene. Multiple antimicrobial resistant isolates were found in samples that were collected from all the manure and digestates. Among them, 12.3% were highly resistant to some of the antibiotics tested, especially to clindamycin (MIC ≥ 16 µg/mL) and tilmicosin (MIC > 64 µg/mL). Some isolates were highly resistant to antibiotics used in human medicine, including vancomycin (MIC > 8 µg/mL) and imipenem (MIC > 64 µg/mL). These results suggest that digestate may be a carrier of the virulent and multidrug resistant C. perfringens.


Assuntos
Biocombustíveis , Clostridium perfringens/isolamento & purificação , Antibacterianos , Bactérias , Infecções por Clostridium , Clostridium perfringens/genética , Humanos , Esterco
6.
Microbiologyopen ; 8(10): e872, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31568706

RESUMO

The number of agricultural biogas plants has been increasing in the past decades in some European countries. Digestates obtained after anaerobic digestion (AD) of manure are usually spread on agricultural land; however, their hygiene status regarding pathogens posing public health and/or animal health challenges has been poorly characterized up to now in France. In this study, three replicates of manure and digestate were collected from five farm biogas plants receiving animal manure in order to assess the occurrence and concentrations of sporulating (Clostridium botulinum, Clostridioides difficile, Clostridium perfringens) and nonsporulating (Listeria monocytogenes, thermotolerant Campylobacter spp., Salmonella, Escherichia coli, enterococci) bacteria. Concentrations of E. coli, enterococci, and C. perfringens in digestates ranged from 102 to 104 , 104 to 105 , and <103 to 7 × 105  CFU/g, respectively. Salmonella and C. difficile were detected in manure and digestate from the five biogas plants at concentrations ranging from <1.3 to >7 × 102  MPN/g and from 1.3 to 3 × 102  MPN/g, respectively. Thermotolerant Campylobacter, detected in all the manures, was only found in two digestates at a concentration of cells ranging from <10 to 2.6 × 102  CFU/g. Listeria monocytogenes and C. botulinum were detected in three manures and four digestates. The bacterial counts of L. monocytogenes and C. botulinum did not exceed 3 × 102 and 14 MPN/g, respectively. C. botulinum type B was detected at very low level in both the manure and digestate of farm biogas plants with no botulism history. The levels of pathogenic bacteria in both manure and digestate suggested that some bacteria can persist throughout AD.


Assuntos
Clostridium/isolamento & purificação , Enterobacteriaceae/isolamento & purificação , Listeria monocytogenes/isolamento & purificação , Esterco/microbiologia , Biocombustíveis/microbiologia , Clostridium/crescimento & desenvolvimento , Contagem de Colônia Microbiana , Enterobacteriaceae/crescimento & desenvolvimento , França , Listeria monocytogenes/crescimento & desenvolvimento , Esporos Bacterianos/crescimento & desenvolvimento
7.
Bioresour Technol ; 231: 65-74, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28196781

RESUMO

The stability of digestate organic matter is a key parameter for its use in agriculture. Here, the organic matter stability was compared between 14 post-treated digestates and the relationship between organic matter complexity and biodegradability was highlighted. Respirometric activity and CH4 yields in batch tests showed a positive linear correlation between both types of biodegradability (R2=0.8). The accessibility and complexity of organic matter were assessed using chemical extractions combined with fluorescence spectroscopy, and biodegradability was mostly anti-correlated with complexity of organic matter. Post-treatments presented a significant effect on the biodegradability and complexity of organic matter. Biodegradability was low for composted digestates which comprised slowly accessible complex molecules. Inversely, solid fractions obtained after phase separation contained a substantial part of remaining biodegradable organic matter with a significant easily accessible fraction comprising simpler molecules. Understanding the effect of post-treatment on the biodegradability of digestates should help to optimize their valorization.


Assuntos
Compostos Orgânicos/química , Eliminação de Resíduos , Aerobiose , Anaerobiose , Biodegradação Ambiental , Análise da Demanda Biológica de Oxigênio , Cinética , Análise de Componente Principal , Esgotos/química , Solo , Volatilização
8.
Front Microbiol ; 7: 1469, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27695451

RESUMO

Despite the development of on-farm anaerobic digestion as a process for making profitable use of animal by-products, factors leading to the inactivation of pathogenic bacteria during storage of digestates remain poorly described. Here, a microcosm approach was used to evaluate the persistence of three pathogenic bacteria (Salmonella enterica Derby, Campylobacter coli and Listeria monocytogenes) in digestates from farms, stored for later land spreading. Nine samples, including raw digestates, liquid fractions of digestate and composted digestates, were inoculated with each pathogen and maintained for 40 days at 24°C. Concentrations of pathogens were monitored using culture and qPCR methods. The persistence of L. monocytogenes, detected up to 20 days after inoculation, was higher than that of Salmonella Derby, detected for 7-20 days, and of C. coli (not detected after 7 days). In some digestates, the concentration of the pathogens by qPCR assay was several orders of magnitude higher than the concentration of culturable cells, suggesting a potential loss of culturability and induction of Viable but Non-Culturable (VBNC) state. The potential VBNC state which was generally not observed in the same digestate for the three pathogens, occurred more frequently for C. coli and L. monocytogenes than for Salmonella Derby. Composting a digestate reduced the persistence of seeded L. monocytogenes but promoted the maintenance of Salmonella Derby. The effect of NH[Formula: see text]/NH3 on the culturability of C. coli and Salmonella Derby was also shown. The loss of culturability may be the underlying mechanism for the regrowth of pathogens. We have also demonstrated the importance of using molecular tools to monitor pathogens in environmental samples since culture methods may underestimate cell concentration. Our results underline the importance of considering VBNC cells when evaluating the sanitary effect of an anaerobic digestion process and the persistence of pathogens during the storage of digestates and subsequent land spreading.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...